8 resultados para essential fatty acids

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gut microbiota (GM) is essential for human health and contributes to several diseases; indeed it can be considered an extension of the self and, together with the genetic makeup, determines the physiology of an organism. In this thesis has been studied the peripheral immune system reconstitution in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (aHSCT) in the early phase; in parallel, have been also explored the gut microbiota variations as one of the of primary factors in governing the fate of the immunological recovery, predisposing or protecting from complications such as the onset of acute graft-versus-host disease (GvHD). Has been demonstrated, to our knowledge for the first time, that aHSCT in pediatric patients is associated to a profound modification of the GM ecosystem with a disruption of its mutualistic asset. aGvHD and non-aGvHD subjects showed differences in the process of GM recovery, in members abundance of the phylum Bacteroidetes, and in propionate fecal concentration; the latter are higher in the pre-HSCT composition of non-GvHD subjects than GvHD ones. Short-chain fatty acids (SCFAs), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients and distribute systemically from the gut to blood. For this reason, has been studied their effect in vitro on human DCs, the key regulators of our immune system and the main player of aGvHD onset. Has been observed that propionate and, particularly, butyrate show a strong and direct immunomodulatory activity on DCs reducing inflammatory markers such as chemokines and interleukins. This study, with the needed caution, suggests that the pre-existing GM structure can be protective against aGvHD onset, exerting its protective role through SCFAs. They, indeed, may regulate cell traffic within secondary lymphoid tissues, influence T cell development during antigen recognition, and, thus, directly shape the immune system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we elucidate the role of polyunsaturated fatty acids (PUFAs) in the prevention of cardiovascular diseases, focusing the attention on their role in the modulation of acyl composition of cell lipids and of gene expression. Regarding this latter mechanism, the effectiveness of PUFAs as activators of two transcriptional factors, SREBPs and PPARs, have been considered. Two different model system have been used: primary cultures of neonatal rat cardiomyocytes and an human hepatoma cell line (HepG2). Cells have been supplemented with different PUFAs at physiological concentration, and special attention has been devoted to the main n-3 PUFAs, EPA and DHA. PUFAs influence on global gene expression in cardiomyocytes has been evaluated using microarray technique. Furthermore, since it is not fully elucidated which transcription factors are involved in this modulation in the heart, expression and activation of the three different PPAR isoforms have been investigated. Hepatocytes have been used as experimental model system in the evaluation of PUFAs effect on SREBP activity. SREBPs are considered the main regulator of cholesterol and triglyceride synthesis, which occur mainly in the liver. In both experimental models the modification of cell lipid fatty acid composition subsequent to PUFAs supplementation has been evaluated, and related to the effects observed at molecular level. The global vision given by the obtained results may be important for addressing new researches and be useful to educators and policy makers in setting recommendations for reaching optimal health through good nutrition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"Bioactive compounds" are extranutritional constituents that typically occur in small quantities in food. They are being intensively studied to evaluate their effects on health. Bioactive compounds include both water soluble compounds, such as phenolics, and lipidic substances such as n-3 fatty acids, tocopherols and sterols. Phenolic compounds, tocopherols and sterols are present in all plants and have been studied extensively in cereals, nuts and oil. n-3 fatty acids are present in fish and all around the vegetable kingdom. The aim of the present work was the determination of bioactive and potentially toxic compounds in cereal based foods and nuts. The first section of this study was focused on the determination of bioactive compounds in cereals. Because of that the different forms of phytosterols were investigated in hexaploid and tetraploid wheats. Hexaploid cultivars were the best source of esterified sterols (40.7% and 37.3% of total sterols for Triticum aestivum and Triticum spelta, respectively). Significant amounts of free sterols (65.5% and 60.7% of total sterols for Triticum durum and Triticum dicoccon, respectively) were found in the tetraploid cultivars. Then, free and bound phenolic compounds were identified in barley flours. HPLCESI/ MSD analysis in negative and positive ion mode established that barley free flavan-3- ols and proanthocyanidins were four dimers and four trimers having (epi)catechin and/or (epi)gallocatechin (C and/or GC) subunits. Hydroxycinnamic acids and their derivatives were the main bound phenols in barley flours. The results obtained demonstrated that barley flours were rich in phenolic compounds that showed high antioxidant activity. The study also examined the relationships between phenolic compounds and lipid oxidation of bakery. To this purpose, the investigated barley flours were used in the bakery production. The formulated oven products presented an interesting content of phenolic compounds, but they were not able to contain the lipid oxidation. Furthermore, the influence of conventional packaging on lipid oxidation of pasta was evaluated in n-3 enriched spaghetti and egg spaghetti. The results proved that conventional packaging was not appropriated to preserve pasta from lipid oxidation; in fact, pasta that was exposed to light showed a high content of potentially toxic compounds derived from lipid oxidation (such as peroxide, oxidized fatty acids and COPs). In the second section, the content of sterols, phenolic compounds, n-3 fatty acids and tocopherols in walnuts were reported. Rapid analytical techniques were used to analyze the lipid fraction and to characterize phenolic compounds in walnuts. Total lipid chromatogram was used for the simultaneous determination of the profile of sterols and tocopherols. Linoleic and linolenic acids were the most representative n-6 and n-3 essential dietary fatty acids present in these nuts. Walnuts contained substantial amounts of γ- and δ-tocopherol, which explained their antioxidant properties. Sitosterol, Δ5-avenasterol and campesterol were the major free sterols found. Capillary electrophoresis coupled to DAD and microTOF was utilized to determine phenolic content of walnut. A new compound in walnut ((2E,4E)- 8-hydroxy-2,7-dimethyl-2,4-decadiene-1,10-dioic acid 6-O-β-D-glucopiranosyl ester, [M−H]− 403.161m/z) with a structure similar to glansreginins was also identified. Phenolic compounds corresponded to 14–28% of total polar compounds quantified. Aglycone and glycosylated ellagic acid represented the principal components and account for 64–75% of total phenols in walnuts. However, the sum of glansreginins A, B and ((2E,4E)-8-hydroxy- 2,7-dimethyl-2,4-decadiene-1,10-dioic acid 6-O-β-D-glucopiranosyl ester was in the range of 72–86% of total quantified compounds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Iodine is an essential microelement for human health because it is a constituent of the thyroid hormones that regulate growth and development of the organism. Iodine Deficiency Disorders (IDDs) are believed to be one of the commonest preventable human health problems in the world today, according to the World Health Organization: that diseases include endemic goiter, cretinism and fetal abnormalities, among others, and they are caused by lack of iodine in the diet, that is the main source of iodine. Since iodine intake from food is not enough respect to human needs, this can be remedied through dietary diversification, mineral supplementation, food fortification, or increasing the concentration and/or bioavailability of mineral elements in the edible portions of crops through agricultural intervention or genetic selection (biofortification). The introduction of iodized salt is a strategy widely used and accepted to eradicate iodine deficiency, because it is an inexpensive source of stable iodine. Since the intake of salt, though iodized, must still be limited according to the risk of cardiovascular disease, so the increase of iodine content in plants for the production of functional foods is representing a field of study of particular interest and a potential market. In Italy potatoes enriched with iodine are produced by a patented procedure of agronomic biofortification for the fresh market since several years, furthermore they are recently accepted and recommended by Italian Thyroid Association, as an alternative source of iodine. Researches performed during the PhD course intended to characterize this innovative vegetables products, focusing the attention on different aspects, such as chemistry, agriculture, and quality of fresh and fried potatoes. For this purpose, lipid fraction of raw material was firstly investigated, in order to assess whether the presence of iodine in plant metabolism can affect fatty acid or sterol biosynthesis, according to the hypothesis that iodine can be bounded to polyunsaturated fatty acids of cell membranes, protecting them from peroxydation; phytosterols of plant sterol are also studied because their importance in reducing serum cholesterol, especially in potato plant sterols are also involved in synthesis of glycoalkaloid, a family of steroidal toxic secondary metabolites present in plants of the Solanaceae family. To achieve this goal chromatographic analytical techniques were employed to identify and quantify fatty acids and sterols profile of common and iodine enriched row potatoes. Another aim of the project was to evaluate the effects of frying on the quality of iodine-enriched and common potatoes. Since iodine-enriched potatoes are nowadays produced only for the fresh market, preliminary trials of cultivation under controlled environment were carried out to verify if potato varieties suitable for processing were able to absorb and accumulate iodine in the tuber. In a successive phase, these varieties were grown in the field, to evaluate their potential productivity and quality at harvest and after storage. The best potato variety to be destined for processing purposes, was finally subjected to repeated frying cycles; the effects of lipid oxidation on the composition and quality of both potatoes and frying oil bath were evaluated by chromatographic and spectrophotometric analytical techniques. Special attention were paid on volatile compounds of fried potatoes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inflammatory bowel diseases are associated with increased risk of developing colitis-associated colorectal cancer (CAC). Epidemiological data show that the consumption of ω-3 polyunsaturated fatty acids (ω-3 PUFAs) decreases the risk of sporadic colorectal cancer (CRC). Importantly, recent data have shown that eicosapentaenoic acid-free fatty acid (EPA-FFA) reduces polyps formation and growth in models of familial adenomatous polyposis. However, the effects of dietary EPA-FFA are unknown in CAC. We tested the effectiveness of substituting EPA-FFA, for other dietary fats, in preventing inflammation and cancer in the AOM-DSS model of CAC. The AOM-DSS protocols were designed to evaluate the effect of EPA-FFA on both initiation and promotion of carcinogenesis. We found that EPA-FFA diet strongly decreased tumor multiplicity, incidence and maximum tumor size in the promotion and initiation arms. Moreover EPA-FFA, in particular in the initiation arm, led to reduced cell proliferation and nuclear β-catenin expression, whilst it increased apoptosis. In both arms, EPA-FFA treatment led to increased membrane switch from ω-6 to ω-3 PUFAs and a concomitant reduction in PGE2 production. We observed no significant changes in intestinal inflammation between EPA-FFA treated arms and AOM-DSS controls. Importantly, we found that EPA-FFA treatment restored the loss of Notch signaling found in the AOM-DSS control, resulted in the enrichment of Lactobacillus species in the gut microbiota and led to tumor suppressor miR34-a induction. In conclusion, our data suggest that EPA-FFA is an effective chemopreventive agent in CAC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Naphthenic acids (NAs) are an important group of organic pollutants mainly found in hydrocarbon deposits. Although these compounds are toxic, recalcitrant, and persistent in the environment, we are just learning the diversity of microbial communities involved in NAs- degradation and the mechanisms by which NAs are biodegraded. Studies have shown that naphthenic acids are susceptible to biodegradation, which decreases their concentration and reduces toxicity. Nevertheless, little is still known about their biodegradability. The present PhD Thesis’s work is aimed to study the biodegradation of simple model NAs using bacteria strains belonging to the Rhodococcus genus. In particular, Rh. sp. BCP1 and Rh. opacus R7 were able to utilize NAs such as cyclohexane carboxylic acid and cyclopentane carboxylic acid as the sole carbon and energy sources, even at concentrations up to 1000 mg/L. The presence of either substituents or longer carboxylic acid chains attached to the cyclohexane ring negatively affected the growth by pure bacterial cultures. Moreover, BCP1 and R7 cells incubated in the presence of CHCA or CPCA show a general increase of saturated and methyl-substituted fatty acids in their membrane, while the cis-mono-unsaturated ones decrease, as compared to glucose-grown cells. The observed lipid molecules modification during the growth in the presence of NAs is suggested as a possible mechanism to decrease the fluidity of the cell membrane to counteract NAs toxicity. In order to further evaluate this toxic effect on cell features, the morphological changes of BCP1 and R7 cells were also assessed through Transmission Electron Microscopy (TEM), revealing interesting ultrastructural changes. The induction of putative genes, and the construction of a random transposon mutagenesis library were also carried out to reveal the mechanisms by which these Rhodococcus strains can degrade toxic compounds such as NAs.